Search results
Results from the WOW.Com Content Network
The tradeoff between availability, consistency and latency, as described by the PACELC theorem. In database theory, the PACELC theorem is an extension to the CAP theorem.It states that in case of network partitioning (P) in a distributed computer system, one has to choose between availability (A) and consistency (C) (as per the CAP theorem), but else (E), even when the system is running ...
The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]
Availability Every request received by a non-failing node in the system must result in a response. This is the definition of availability in CAP theorem as defined by Gilbert and Lynch. [1] Note that availability as defined in CAP theorem is different from high availability in software architecture. [5] Partition tolerance
High-availability clusters (also known as HA clusters, fail-over clusters) are groups of computers that support server applications that can be reliably utilized with a minimum amount of down-time. They operate by using high availability software to harness redundant computers in groups or clusters that provide continued service when system ...
High availability (HA) is a characteristic of a system that aims to ensure an agreed level of operational performance, usually uptime, for a higher than normal period. [ 1 ] There is now more dependence on these systems as a result of modernization.
A clustering with an average silhouette width of over 0.7 is considered to be "strong", a value over 0.5 "reasonable" and over 0.25 "weak", but with increasing dimensionality of the data, it becomes difficult to achieve such high values because of the curse of dimensionality, as the distances become more similar. [2]
CURE (no. of points,k) Input : A set of points S Output : k clusters For every cluster u (each input point), in u.mean and u.rep store the mean of the points in the cluster and a set of c representative points of the cluster (initially c = 1 since each cluster has one data point).
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]