enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Confirmatory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Confirmatory_factor_analysis

    It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct (or factor). As such, the objective of confirmatory factor analysis is to test whether the data fit a hypothesized measurement model. This hypothesized model is based on theory and/or previous analytic research. [2]

  3. Construct validity - Wikipedia

    en.wikipedia.org/wiki/Construct_validity

    Intervention studies where a group with low scores in the construct is tested, taught the construct, and then re-measured can demonstrate a test's construct validity. If there is a significant difference pre-test and post-test, which are analyzed by statistical tests, then this may demonstrate good construct validity.

  4. Factor analysis - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis

    Image factoring is based on the correlation matrix of predicted variables rather than actual variables, where each variable is predicted from the others using multiple regression. Alpha factoring is based on maximizing the reliability of factors, assuming variables are randomly sampled from a universe of variables.

  5. Average variance extracted - Wikipedia

    en.wikipedia.org/wiki/Average_variance_extracted

    The average variance extracted has often been used to assess discriminant validity based on the following "rule of thumb": the positive square root of the AVE for each of the latent variables should be higher than the highest correlation with any other latent variable. If that is the case, discriminant validity is established at the construct ...

  6. Exploratory factor analysis - Wikipedia

    en.wikipedia.org/wiki/Exploratory_factor_analysis

    In multivariate statistics, exploratory factor analysis (EFA) is a statistical method used to uncover the underlying structure of a relatively large set of variables. EFA is a technique within factor analysis whose overarching goal is to identify the underlying relationships between measured variables. [ 1 ]

  7. Latent and observable variables - Wikipedia

    en.wikipedia.org/.../Latent_and_observable_variables

    Latent variables, as created by factor analytic methods, generally represent "shared" variance, or the degree to which variables "move" together. Variables that have no correlation cannot result in a latent construct based on the common factor model. [5] The "Big Five personality traits" have been inferred using factor analysis. extraversion [6]

  8. Structural equation modeling - Wikipedia

    en.wikipedia.org/wiki/Structural_equation_modeling

    The appropriate statistical feature to maximize or minimize to obtain estimates depends on the variables' levels of measurement (estimation is generally easier with interval level measurements than with nominal or ordinal measures), and where a specific variable appears in the model (e.g. endogenous dichotomous variables create more estimation ...

  9. Measurement invariance - Wikipedia

    en.wikipedia.org/wiki/Measurement_invariance

    Measurement invariance or measurement equivalence is a statistical property of measurement that indicates that the same construct is being measured across some specified groups. [1] For example, measurement invariance can be used to study whether a given measure is interpreted in a conceptually similar manner by respondents representing ...