enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  3. Ptolemaic graph - Wikipedia

    en.wikipedia.org/wiki/Ptolemaic_graph

    In graph theory, a Ptolemaic graph is an undirected graph whose shortest path distances obey Ptolemy's inequality, which in turn was named after the Greek astronomer and mathematician Ptolemy. The Ptolemaic graphs are exactly the graphs that are both chordal and distance-hereditary ; they include the block graphs [ 1 ] and are a subclass of the ...

  4. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  5. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  6. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    List of inequalities; Lists of integrals; ... Basel problem (mathematical analysis) Bass's theorem ... Ptolemy's theorem

  7. Lunar theory - Wikipedia

    en.wikipedia.org/wiki/Lunar_theory

    Ptolemy's work the Almagest had wide and long-lasting acceptance and influence for over a millennium. He gave a geometrical lunar theory that improved on that of Hipparchus by providing for a second inequality of the Moon's motion, using a device that made the apparent apogee oscillate a little – prosneusis of the epicycle.

  8. Equant - Wikipedia

    en.wikipedia.org/wiki/Equant

    Between Hipparchus's model and Ptolemy's there was an intermediate model that was proposed to account for the motion of planets in general based on the observed motion of Mars. In this model, the deferent had a center that was also the equant, that could be moved along the deferent's line of symmetry in order to match to a planet's retrograde ...

  9. Alhazen's problem - Wikipedia

    en.wikipedia.org/wiki/Alhazen's_problem

    Alhazen's problem, also known as Alhazen's billiard problem, is a mathematical problem in geometrical optics first formulated by Ptolemy in 150 AD. [1] It is named for the 11th-century Arab mathematician Alhazen ( Ibn al-Haytham ) who presented a geometric solution in his Book of Optics .