enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coding strand - Wikipedia

    en.wikipedia.org/wiki/Coding_strand

    By convention, the coding strand is the strand used when displaying a DNA sequence. It is presented in the 5' to 3' direction. Wherever a gene exists on a DNA molecule, one strand is the coding strand (or sense strand), and the other is the noncoding strand (also called the antisense strand, [3] anticoding strand, template strand or transcribed ...

  3. Transcription (biology) - Wikipedia

    en.wikipedia.org/wiki/Transcription_(biology)

    The non-template (sense) strand of DNA is called the coding strand, because its sequence is the same as the newly created RNA transcript (except for the substitution of uracil for thymine). This is the strand that is used by convention when presenting a DNA sequence. [4]

  4. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    These two strands serve as the template for the leading and lagging strands, which will be created as DNA polymerase matches complementary nucleotides to the templates; the templates may be properly referred to as the leading strand template and the lagging strand template. [citation needed] DNA is read by DNA polymerase in the 3′ to 5 ...

  5. DNA polymerase - Wikipedia

    en.wikipedia.org/wiki/DNA_polymerase

    DNA polymerase's ability to slide along the DNA template allows increased processivity. There is a dramatic increase in processivity at the replication fork. This increase is facilitated by the DNA polymerase's association with proteins known as the sliding DNA clamp. The clamps are multiple protein subunits associated in the shape of a ring.

  6. Eukaryotic transcription - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_transcription

    Double stranded DNA that enters from the front of the enzyme is unzipped to avail the template strand for RNA synthesis. For every DNA base pair separated by the advancing polymerase, one hybrid RNA:DNA base pair is immediately formed. DNA strands and nascent RNA chain exit from separate channels; the two DNA strands reunite at the trailing end ...

  7. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    In contrast, polymerase δ synthesizes DNA on the "lagging" strand, which is the opposite DNA template strand, in a fragmented or discontinuous manner. The discontinuous stretches of DNA replication products on the lagging strand are known as Okazaki fragments and are about 100 to 200 bases in length at eukaryotic replication forks.

  8. DNA synthesis - Wikipedia

    en.wikipedia.org/wiki/DNA_synthesis

    DNA replication also works by using a DNA template, the DNA double helix unwinds during replication, exposing unpaired bases for new nucleotides to hydrogen bond to. Gene synthesis, however, does not require a DNA template and genes are assembled de novo. DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The ...

  9. RNA polymerase - Wikipedia

    en.wikipedia.org/wiki/RNA_polymerase

    It uses one strand (darker orange) as a template to create the single-stranded messenger RNA (green). In molecular biology, RNA polymerase (abbreviated RNAP or RNApol), or more specifically DNA-directed/dependent RNA polymerase (DdRP), is an enzyme that catalyzes the chemical reactions that synthesize RNA from a DNA template.