enow.com Web Search

  1. Ads

    related to: how to find multiples and factors
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Packets

      Perfect for independent work!

      Browse our fun activity packs.

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

Search results

  1. Results from the WOW.Com Content Network
  2. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.

  3. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]

  4. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .

  5. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    gcd(a, b) is closely related to the least common multiple lcm(a, b): we have gcd(a, b)⋅lcm(a, b) = | a⋅b |. This formula is often used to compute least common multiples: one first computes the GCD with Euclid's algorithm and then divides the product of the given numbers by their GCD. The following versions of distributivity hold true:

  6. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).

  7. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  8. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    This applies to divisors that are a factor of a power of 10. This is because sufficiently high powers of the base are multiples of the divisor, and can be eliminated. For example, in base 10, the factors of 10 1 include 2, 5, and 10. Therefore, divisibility by 2, 5, and 10 only depend on whether the last 1 digit is divisible by those divisors.

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and lcm using other algorithms which do not require known prime factorization.

  1. Ads

    related to: how to find multiples and factors