Search results
Results from the WOW.Com Content Network
This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process.
1972 — Jacob Bekenstein suggests that black holes have an entropy proportional to their surface area due to information loss effects; 1974 — Stephen Hawking applies quantum field theory to black hole spacetimes and shows that black holes will radiate particles with a black-body spectrum which can cause black hole evaporation
The two powerful families fought a legendary war in Japanese history, the stars seen as facing each other off and only kept apart by the Belt. [207] [208] In Tahitian lore, Betelgeuse was one of the pillars propping up the sky, known as Anâ-varu, the pillar to sit by. It was also called Ta'urua-nui-o-Mere "Great festivity in parental yearnings ...
When pairs of phonons were created near the analogue black hole, Steinhauer observed one particle falling in and the other escaping. This, he said, is analogous to a photon escaping a real black hole.
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
(May 2) First visual proof of the existence of black holes is published. Suvi Gezari's team in Johns Hopkins University, using the Hawaiian telescope Pan-STARRS 1, record images of a supermassive black hole 2.7 million light-years away that is swallowing a red giant. [27]
The crucial phase of our discovery of black holes took place in a suitably dark period of human history – World War II.
In the 1970s came Stephen Hawking's startling prediction of black hole evaporation, powered by quantum fluctuations near the event horizon. [1] Toward the end of the text, Thorne deals with the much more speculative question of the nature of the core of a black hole; the so-called gravitational singularity predicted by Einstein's field equations.