Search results
Results from the WOW.Com Content Network
The center of the symmetric group, S n, is trivial for n ≥ 3. The center of the alternating group, A n, is trivial for n ≥ 4. The center of the general linear group over a field F, GL n (F), is the collection of scalar matrices, { sI n ∣ s ∈ F \ {0} }. The center of the orthogonal group, O n (F) is {I n, −I n}.
More precisely, the central charge is the charge that corresponds, by Noether's theorem, to the center of the central extension of the symmetry group. In theories with supersymmetry, this definition can be generalized to include supergroups and Lie superalgebras. A central charge is any operator which commutes with all the other supersymmetry ...
The symmetric group of degree n ≥ 4 has Schur covers of order 2⋅n! There are two isomorphism classes if n ≠ 6 and one isomorphism class if n = 6. The alternating group of degree n has one isomorphism class of Schur cover, which has order n! except when n is 6 or 7, in which case the Schur cover has order 3⋅n!.
In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods ...
In the theory of Coxeter groups, the symmetric group is the Coxeter group of type A n and occurs as the Weyl group of the general linear group. In combinatorics , the symmetric groups, their elements ( permutations ), and their representations provide a rich source of problems involving Young tableaux , plactic monoids , and the Bruhat order .
In mathematics, in the field of group theory, a subgroup of a group is termed central if it lies inside the center of the group. Given a group G {\displaystyle G} , the center of G {\displaystyle G} , denoted as Z ( G ) {\displaystyle Z(G)} , is defined as the set of those elements of the group which commute with every element of the group.
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.
This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...