enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.

  3. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    If a instead is one, the variable base (containing the value b 2 i mod m of the original base) is simply multiplied in. In this example, the base b is raised to the exponent e = 13. The exponent is 1101 in binary. There are four binary digits, so the loop executes four times, with values a 0 = 1, a 1 = 0, a 2 = 1, and a 3 = 1.

  4. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ ( φ ( m )) such primitive roots, where φ is the Euler's totient function.

  5. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  6. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For any integer n, n ≡ 1 (mod 2) if and only if ⁠ 3n + 1 / 2 ⁠ ≡ 2 (mod 3). Equivalently, ⁠ 2 n − 1 / 3 ⁠ ≡ 1 (mod 2) if and only if n ≡ 2 (mod 3) . Conjecturally, this inverse relation forms a tree except for a 1–2 loop (the inverse of the 1–2 loop of the function f(n) revised as indicated above).

  7. Legendre symbol - Wikipedia

    en.wikipedia.org/wiki/Legendre_symbol

    In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0.

  8. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    both 3 and 12 are quadratic residues mod q (per law of quadratic reciprocity) neither 3 nor 12 is a primitive root of q; the only safe primes that are also full reptend primes in base 12 are 5 and 7; q divides 3 (q−1)/2 − 1 and 12 (q−1)/2 − 1, same as 3 (q−1)/2 ≡ 1 mod q and 12 (q−1)/2 ≡ 1 mod q (per Euler's criterion)

  9. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.