Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the ...
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for ...
Common types of potential energy include the gravitational potential energy of an object, the elastic potential energy of a deformed spring, and the electric potential energy of an electric charge in an electric field. The unit for energy in the International System of Units (SI) is the joule (symbol J).
Elastic pendulum. In physics and mathematics, in the area of dynamical systems, an elastic pendulum[1][2] (also called spring pendulum[3][4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2 ...
In terms of energy, all systems have two types of energy: potential energy and kinetic energy. When a spring is stretched or compressed, it stores elastic potential energy, which is then transferred into kinetic energy. The potential energy within a spring is determined by the equation =.
Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...
In mechanics, two or more springs are said to be in series when they are connected end-to-end or point to point, and it is said to be in parallel when they are connected side-by-side; in both cases, so as to act as a single spring: More generally, two or more springs are in series when any external stress applied to the ensemble gets applied to ...
In a real spring–mass system, the spring has a non-negligible mass.Since not all of the spring's length moves at the same velocity as the suspended mass (for example the point completely opposed to the mass , at the other end of the spring, is not moving at all), its kinetic energy is not equal to .