Search results
Results from the WOW.Com Content Network
To see the elongated shape of ψ (x, y, z)2 functions that show probability density more directly, see pictures of d-orbitals below. In quantum mechanics, an atomic orbital (/ ˈɔːrbɪtəl /) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution ...
The three dumbbell-shaped p-orbitals have equal energy and are oriented mutually perpendicularly (or orthogonally). The p-orbitals oriented in the z-direction (p z) can overlap end-on forming a bonding (symmetrical) σ orbital and an antibonding σ* molecular orbital. In contrast to the sigma 1s MO's, the σ 2p has some non-bonding electron ...
The energy level of the bonding orbitals is lower, and the energy level of the antibonding orbitals is higher. For the bond in the molecule to be stable, the covalent bonding electrons occupy the lower energy bonding orbital, which may be signified by such symbols as σ or π depending on the situation.
Nuclear physics. In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. [1] The first shell model was proposed by Dmitri Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following ...
Electron configuration. In atomic physics and quantum chemistry, the electron configuration is the distribution of electrons of an atom or molecule (or other physical structure) in atomic or molecular orbitals. [1] For example, the electron configuration of the neon atom is 1s2 2s2 2p6, meaning that the 1s, 2s, and 2p subshells are occupied by ...
Degenerate energy levels. In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement.
The principal quantum number n represents the relative overall energy of each orbital. The energy level of each orbital increases as its distance from the nucleus increases. The sets of orbitals with the same n value are often referred to as an electron shell. The minimum energy exchanged during any wave–matter interaction is the product of ...
The Zeeman effect (/ ˈzeɪmən / ZAY-mən, Dutch: [ˈzeːmɑn]) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize for this discovery. It is analogous to the Stark effect, the ...