Search results
Results from the WOW.Com Content Network
A partition of a set S is a set of non-empty, pairwise disjoint subsets of S, called "parts" or "blocks", whose union is all of S. Consider a finite set that is linearly ordered, or (equivalently, for purposes of this definition) arranged in a cyclic order like the vertices of a regular n-gon.
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
To achieve an O(n 2) running time, a ranking matrix whose entry at row i and column j is the position of the jth individual in the ith's list; this takes O(n 2) time. With the ranking matrix, checking whether an individual prefers one to another can be done in constant time by comparing their ranks in the matrix.
To define the join, form a relation on the blocks A of α and the blocks B of ρ by A ~ B if A and B are not disjoint. Then α ∨ ρ {\displaystyle \alpha \vee \rho } is the partition in which each block C is the union of a family of blocks connected by this relation.
The optimization version of the problem, maximum set packing, asks for the maximum number of pairwise disjoint sets in the list. It is a maximization problem that can be formulated naturally as an integer linear program , belonging to the class of packing problems .
In the case where P is ordered by inclusion, and closed under subsets, but does not contain the empty set, this is simply a family of pairwise disjoint sets. A strong upwards antichain B is a subset of P in which no two distinct elements have a common upper bound in P. Authors will often omit the "upwards" and "downwards" term and merely refer ...
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).
Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3] Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.