Search results
Results from the WOW.Com Content Network
In inorganic chemistry, Fajans' rules, formulated by Kazimierz Fajans in 1923, [1] [2] [3] are used to predict whether a chemical bond will be covalent or ionic, and depend on the charge on the cation and the relative sizes of the cation and anion. They can be summarized in the following table:
The circumstances under which a compound will have ionic or covalent character can typically be understood using Fajans' rules, which use only charges and the sizes of each ion. According to these rules, compounds with the most ionic character will have large positive ions with a low charge, bonded to a small negative ion with a high charge. [25]
The cycle is concerned with the formation of an ionic compound from the reaction of a metal (often a Group I or Group II element) with a halogen or other non-metallic element such as oxygen. Born–Haber cycles are used primarily as a means of calculating lattice energy (or more precisely enthalpy [note 1]), which cannot otherwise be measured ...
Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons). As bonds become more polar, they become increasingly ionic in character. Metal oxides vary along the iono-covalent spectrum. [4]
The neutral counting approach assumes the molecule or fragment being studied consists of purely covalent bonds. It was popularized by Malcolm Green along with the L and X ligand notation. [3] It is usually considered easier especially for low-valent transition metals. [4] The "ionic counting" approach assumes purely ionic bonds between atoms.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The classical model identifies three main types of chemical bonds — ionic, covalent, and metallic — distinguished by the degree of charge separation between participating atoms. [3] The characteristics of the bond formed can be predicted by the properties of constituent atoms, namely electronegativity.
Bonds with partially ionic and partially covalent characters are called polar covalent bonds. [2] Ionic compounds conduct electricity when molten or in solution, typically not when solid. Ionic compounds generally have a high melting point, depending on the charge of the ions they consist of. The higher the charges the stronger the cohesive ...