Search results
Results from the WOW.Com Content Network
Large particles are more energetically favorable since, continuing with this example, more atoms are bonded to 6 neighbors and fewer atoms are at the unfavorable surface. As the system tries to lower its overall energy, molecules on the surface of a small particle (energetically unfavorable, with only 3 or 4 or 5 bonded neighbors) will tend to ...
An endergonic reaction (such as photosynthesis) is a reaction that requires energy to be driven. Endergonic means "absorbing energy in the form of work." The activation energy for the reaction is typically larger than the overall energy of the exergonic reaction (1). Endergonic reactions are nonspontaneous.
A reaction with ∆H°<0 is called exothermic reaction while one with ∆H°>0 is endothermic. Figure 8: Reaction Coordinate Diagrams showing favorable or unfavorable and slow or fast reactions [7] The relative stability of reactant and product does not define the feasibility of any reaction all by itself.
However, C–C bond activation is challenging mainly for the following reasons: (1) C-H bond activation is a competitive process of C-C activation, which is both energetically and kinetically more favorable; (2) the accessibility of the transition metal center to C–C bonds is generally difficult due to its 'hidden' nature; (3) relatively high ...
The blue flame sustains itself after the sparks stop because the continued combustion of the flame is now energetically favorable. In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1]
The most energetically unfavorable interaction involves axial substitution at the vertex of the boat portion of the ring (6.1 kcal/mol). These energetic differences can help rationalize the lowest energy conformations of 8 atom ring structures containing an sp 2 center.
For example, consider two extended dislocations: DB = Dγ + γB and BC = Bδ + δC. When they meet, it is more energetically favorable to form a single dislocation, DC = DB + BC = Dγ + γB + Bδ + δC = Dγ + γδ + δC. The trailing partials of each extended dislocation now form a stair-rod partial.
The principle that biological macromolecules catalyze a thermodynamically unfavorable reaction if and only if a thermodynamically favorable reaction occurs simultaneously, underlies all known forms of life. The transfer of electrons from a donor molecule to an acceptor molecule can be spatially separated into a series of intermediate redox ...