enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2] Thus the critical points of a cubic function f defined by f(x) = ax 3 + bx 2 + cx + d, occur at values of x such that the derivative + + = of the cubic function is zero.

  3. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    Critical points of a quartic function are found by solving a cubic equation (the derivative set equal to zero). Inflection points of a quintic function are the solution of a cubic equation (the second derivative set equal to zero).

  4. Inflection point - Wikipedia

    en.wikipedia.org/wiki/Inflection_point

    Inflection points in differential geometry are the points of the curve where the curvature changes its sign. [2] [3] For example, the graph of the differentiable function has an inflection point at (x, f(x)) if and only if its first derivative f' has an isolated extremum at x. (this is not the same as saying that f has an extremum).

  5. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a polynomial curve is n-2, where n is the order of the polynomial equation. An inflection point is a location on the curve where it switches from a positive radius to ...

  6. Cubic plane curve - Wikipedia

    en.wikipedia.org/wiki/Cubic_plane_curve

    The nine inflection points of a non-singular cubic have the property that every line passing through two of them contains exactly three inflection points. The real points of cubic curves were studied by Isaac Newton. The real points of a non-singular projective cubic fall into one or two 'ovals'.

  7. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The inflection points of the curve are exactly the non-singular points where the Hessian determinant is zero. It follows by Bézout's theorem that a cubic plane curve has at most 9 inflection points, since the Hessian determinant is a polynomial of degree 3.

  8. Witch of Agnesi - Wikipedia

    en.wikipedia.org/wiki/Witch_of_Agnesi

    Because one of its inflection points is infinite, the witch has the minimum possible number of finite real inflection points of any non-singular cubic curve. [ 14 ] The largest area of a rectangle that can be inscribed between the witch and its asymptote is 4 a 2 {\displaystyle 4a^{2}} , for a rectangle whose height is the radius of the ...

  9. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The x-coordinates of the red circles are stationary points; the blue squares are inflection points. In mathematics, a critical point is the argument of a function where the function derivative is zero (or undefined, as specified below). The value of the function at a critical point is a critical value. [1]