Search results
Results from the WOW.Com Content Network
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]
The characteristic strength is defined as the strength of the concrete below which not more than 5% of the test results are expected to fall. [ 16 ] For design purposes, this compressive strength value is restricted by dividing with a factor of safety, whose value depends on the design philosophy used.
A foundation is a connecting link between the structure proper and the ground which supports it. The bearing strength characteristics of foundation soil are major design criterion for civil engineering structures. In nontechnical engineering, bearing capacity is the capacity of soil to support the loads applied to the ground.
The Abbott-Firestone curve was first described by Ernest James Abbott and Floyd Firestone in 1933. [ 3 ] [ 4 ] It is useful for understanding the properties of sealing and bearing surfaces. It is commonly used in the engineering and manufacturing of piston cylinder bores of internal combustion engines . [ 5 ]
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures to a solid over time. Concrete is the second-most-used substance in the world after water, [1] and is the most widely used building material. [2] Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. [3]
For existing reinforced concrete structures in chloride-bearing environment and D can be identified calculating the best-fit curve for measured chloride concertation profiles. From concrete samples retrieved on field is therefore possible to define the values of C s and D for residual service life evaluation. [9]
S is the Sommerfeld Number or bearing characteristic number r is the shaft radius c is the radial clearance μ is the absolute viscosity of the lubricant N is the speed of the rotating shaft in rev/s P is the load per unit of projected bearing area. The second part of the equation is seen to be the Hersey number.
The major difference being that with the addition of a fourth bearing the portion of the beam between the two loading points is put under maximum stress, as opposed to only the material right under the central bearing in the case of three-point bending.