Search results
Results from the WOW.Com Content Network
Parts-per-million cube of relative abundance by mass of elements in an average adult human body down to 1 ppm. About 99% of the mass of the human body is made up of six elements: oxygen, carbon, hydrogen, nitrogen, calcium, and phosphorus. Only about 0.85% is composed of another five elements: potassium, sulfur, sodium, chlorine, and magnesium ...
Iodine is an essential trace element in biological systems. It has the distinction of being the heaviest element commonly needed by living organisms as well as the second-heaviest known to be used by any form of life (only tungsten, a component of a few bacterial enzymes, has a higher atomic number and atomic weight). It is a component of ...
These five elements have a strong affinity for sulfur; in the human body they usually bind, via thiol groups (–SH), to enzymes responsible for controlling the speed of metabolic reactions. The resulting sulfur-metal bonds inhibit the proper functioning of the enzymes involved; human health deteriorates, sometimes fatally. [ 56 ]
The body is made up of approximate 1.5% calcium and this abundance is reflected in its lack of redox toxicity and its participation in the structure stability of membranes and other biomolecules. [6] Calcium plays a part in fertilization of an egg, controls several developmental process and may regulate cellular processes like metabolism or ...
The four organogenic elements, namely carbon, hydrogen, oxygen, and nitrogen , that comprise roughly 96% of the human body by weight, [7] are usually not considered as minerals (nutrient). In fact, in nutrition, the term "mineral" refers more generally to all the other functional and structural elements found in living organisms.
Hassium is a synthetic chemical element; it has symbol Hs and atomic number 108. It is highly radioactive: its most stable known isotopes have half-lives of about ten seconds. [a] One of its isotopes, 270 Hs, has magic numbers of protons and neutrons for deformed nuclei, giving it greater stability against spontaneous fission.
The heaviest element known at the end of the 19th century was uranium, with an atomic mass of about 240 (now known to be 238) amu. Accordingly, it was placed in the last row of the periodic table; this fueled speculation about the possible existence of elements heavier than uranium and why A = 240 seemed to be the limit.
The element plays no natural biological role in any organism due to its intense radioactivity and low concentration in the environment. [45] Californium can enter the body from ingesting contaminated food or drinks or by breathing air with suspended particles of the element. Once in the body, only 0.05% of the californium will reach the ...