Search results
Results from the WOW.Com Content Network
In 1950, Hamming introduced the [7,4] Hamming code. It encodes four data bits into seven bits by adding three parity bits. As explained earlier, it can either detect and correct single-bit errors or it can detect (but not correct) both single and double-bit errors.
The Hamming(7,4) code is closely related to the E 7 lattice and, in fact, can be used to construct it, or more precisely, its dual lattice E 7 ∗ (a similar construction for E 7 uses the dual code [7,3,4] 2).
A typical example of linear code is the Hamming code. Codes defined via a Hamming space necessarily have the same length for every codeword, so they are called block codes when it is necessary to distinguish them from variable-length codes that are defined by unique factorization on a monoid.
A code which attains the Hamming bound is said to be a perfect code. Hamming codes are perfect codes. [13] [14] Returning to differential equations, Hamming studied means of numerically integrating them. A popular approach at the time was Milne's Method, attributed to Arthur Milne. [15]
The first error-correcting code was the Hamming(7,4) code, developed by Richard W. Hamming in 1950. This code transforms a message consisting of 4 bits into a codeword of 7 bits by adding 3 parity bits.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
A perfect code may be interpreted as one in which the balls of Hamming radius t centered on codewords exactly fill out the space (t is the covering radius = packing radius). A quasi-perfect code is one in which the balls of Hamming radius t centered on codewords are disjoint and the balls of radius t +1 cover the space, possibly with some ...
This page was last edited on 19 October 2019, at 20:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.