Search results
Results from the WOW.Com Content Network
This triple repetition code is a Hamming code with m = 2, since there are two parity bits, and 2 2 − 2 − 1 = 1 data bit. Such codes cannot correctly repair all errors, however. In our example, if the channel flips two bits and the receiver gets 001, the system will detect the error, but conclude that the original bit is 0, which is incorrect.
then resemblance to rows 1, 2, and 4 of the code generator matrix (G) below will also be evident. So, by picking the parity bit coverage correctly, all errors with a Hamming distance of 1 can be detected and corrected, which is the point of using a Hamming code.
Diagram of a RAID 1 setup. RAID 1 consists of an exact copy (or mirror) of a set of data on two or more disks; a classic RAID 1 mirrored pair contains two disks.This configuration offers no parity, striping, or spanning of disk space across multiple disks, since the data is mirrored on all disks belonging to the array, and the array can only be as big as the smallest member disk.
Codes with minimum Hamming distance d = 2 are degenerate cases of error-correcting codes and can be used to detect single errors. The parity bit is an example of a single-error-detecting code. The parity bit is an example of a single-error-detecting code.
See Hamming code for an example of an error-correcting code. Parity bit checking is used occasionally for transmitting ASCII characters, which have 7 bits, leaving the 8th bit as a parity bit. For example, the parity bit can be computed as follows. Assume Alice and Bob are communicating and Alice wants to send Bob the simple 4-bit message 1001.
The American mathematician Richard Hamming pioneered this field in the 1940s and invented the first error-correcting code in 1950: the Hamming (7,4) code. [ 5 ] FEC can be applied in situations where re-transmissions are costly or impossible, such as one-way communication links or when transmitting to multiple receivers in multicast .
RAID 2 consists of bit-level striping with dedicated Hamming-code parity. All disk spindle rotation is synchronized and data is striped such that each sequential bit is on a different drive. Hamming-code parity is calculated across corresponding bits and stored on at least one parity drive. [11]
The Reed–Solomon code is a [n, k, n − k + 1] code; in other words, it is a linear block code of length n (over F) with dimension k and minimum Hamming distance = + The Reed–Solomon code is optimal in the sense that the minimum distance has the maximum value possible for a linear code of size ( n , k ); this is known as the Singleton bound .