enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].

  3. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Simplified forms of Gaussian elimination have been developed for these situations. [ 6 ] The textbook Numerical Mathematics by Alfio Quarteroni , Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    Thus the name Gaussian elimination is only a convenient abbreviation of a complex history. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. [4] To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations.

  5. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    These decompositions summarize the process of Gaussian elimination in matrix form. Matrix P represents any row interchanges carried out in the process of Gaussian elimination. If Gaussian elimination produces the row echelon form without requiring any row interchanges, then P = I, so an LU decomposition exists.

  6. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    The leading entry (that is, the left-most nonzero entry) of every nonzero row, called the pivot, is on the right of the leading entry of every row above. [2] Some texts add the condition that the leading coefficient must be 1 [3] while others require this only in reduced row echelon form.

  7. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this ...

  8. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    No (partial) pivoting is necessary for a strictly column diagonally dominant matrix when performing Gaussian elimination (LU factorization). The Jacobi and Gauss–Seidel methods for solving a linear system converge if the matrix is strictly (or irreducibly) diagonally dominant. Many matrices that arise in finite element methods are diagonally ...

  9. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    A tridiagonal matrix is a matrix that is both upper and lower Hessenberg matrix. [2] In particular, a tridiagonal matrix is a direct sum of p 1-by-1 and q 2-by-2 matrices such that p + q/2 = n — the dimension of the tridiagonal.