Search results
Results from the WOW.Com Content Network
The time frame for recombination can be estimated from the time dependence of the temperature of the cosmic microwave background (CMB). [4] The microwave background is a blackbody spectrum representing the photons present at recombination, shifted in energy by the expansion of the universe.
Meteorites are often studied as part of cosmochemistry. Cosmochemistry (from Ancient Greek κόσμος (kósmos) 'universe' and χημεία (khēmeía) 'chemistry') or chemical cosmology is the study of the chemical composition of matter in the universe and the processes that led to those compositions. [1]
This is a list of the largest cosmic structures so far discovered. The unit of measurement used is the light-year (distance traveled by light in one Julian year; approximately 9.46 trillion kilometres). This list includes superclusters, galaxy filaments and large quasar groups (LQGs). The structures are listed based on their longest dimension.
This class of GRB-like events was first discovered through the detection of Swift J1644+57 (originally classified as GRB 110328A) by the Swift Gamma-Ray Burst Mission on 28 March 2011. This event had a gamma-ray duration of about 2 days, much longer than even ultra-long GRBs, and was detected in many frequencies for months and years after.
Another example is the neutrino decoupling which occurred within one second of the Big Bang. [4] Analogous to the decoupling of photons, neutrinos decoupled when the rate of weak interactions between neutrinos and other forms of matter dropped below the rate of expansion of the universe, which produced a cosmic neutrino background of freely streaming neutrinos.
The history of gamma-ray [1] began with the serendipitous detection of a gamma-ray burst (GRB) on July 2, 1967, by the U.S. Vela satellites. After these satellites detected fifteen other GRBs, Ray Klebesadel of the Los Alamos National Laboratory published the first paper on the subject, Observations of Gamma-Ray Bursts of Cosmic Origin. [2]
This occurred between 150 million and one billion years after the Big Bang (at a redshift 20 > z > 6) [3]: 150 At that time, however, matter had been diffused by the expansion of the universe, and the scattering interactions of photons and electrons were much less frequent than before electron-proton recombination. Thus, the universe was full ...
The Cosmic Calendar is a method to visualize the chronology of the universe, scaling its currently understood age of 13.8 billion years to a single year in order to help intuit it for pedagogical purposes in science education or popular science.