Search results
Results from the WOW.Com Content Network
Radiobiology (also known as radiation biology) is a field of clinical and basic medical sciences that involves the study of the action of radioactivity on biological systems. The controlled action of deleterious radioactivity on living systems is the basis of radiation therapy.
A medical isotope is an isotope used in medicine. The first uses of isotopes in medicine were in radiopharmaceuticals , and this is still the most common use. However more recently, separated stable isotopes have come into use.
Nuclear medicine (nuclear radiology, nucleology), [1] [2] is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging is, in a sense, radiology done inside out , because it records radiation emitted from within the body rather than radiation that is transmitted through ...
Radiopharmaceuticals, or medicinal radiocompounds, are a group of pharmaceutical drugs containing radioactive isotopes. Radiopharmaceuticals can be used as diagnostic and therapeutic agents. Radiopharmaceuticals emit radiation themselves, which is different from contrast media which absorb or alter external electromagnetism or ultrasound.
Radiopharmacology is radiochemistry applied to medicine and thus the pharmacology of radiopharmaceuticals (medicinal radiocompounds, that is, pharmaceutical drugs that are radioactive). Radiopharmaceuticals are used in the field of nuclear medicine as radioactive tracers in medical imaging and in therapy for many diseases (for example ...
Radiobiology (also known as radiation biology, and uncommonly as actinobiology) is a field of clinical and basic medical sciences that involves the study of the effects of ionizing radiation on living things, in particular health effects of radiation.
The field of radiation therapy began to grow in the early 1900s largely due to the groundbreaking work of Nobel Prize–winning scientist Marie Curie (1867–1934), who discovered the radioactive elements polonium and radium in 1898. This began a new era in medical treatment and research. [118]
This was a form of radioactive decay which had never been observed before this time. Segrè and I were able to show that this radioactive isotope of the element with the atomic number 43 decayed with a half-life of 6.6 h [later updated to 6.0 h] and that it was the daughter of a 67-h [later updated to 66 h] molybdenum parent radioactivity.