enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simulation-based optimization - Wikipedia

    en.wikipedia.org/wiki/Simulation-based_optimization

    In these cases, the goal is to iterative find optimal values for the input variables rather than trying all possible values. This process is called simulation optimization. [2] Specific simulation–based optimization methods can be chosen according to Figure 1 based on the decision variable types. [3]

  3. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    A series of linear programming constraints on two variables produce a region of possible values for those variables. Solvable two-variable problems will have a feasible region in the shape of a convex simple polygon if it is bounded. In an algorithm that tests feasible points sequentially, each tested point is in turn a candidate solution.

  4. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    It is easy to find situations for which Newton's method oscillates endlessly between two distinct values. For example, for Newton's method as applied to a function f to oscillate between 0 and 1, it is only necessary that the tangent line to f at 0 intersects the x -axis at 1 and that the tangent line to f at 1 intersects the x -axis at 0. [ 19 ]

  5. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    The resulting values are quotient-values and hard to interpret. A value of 1 or even less indicates a clear inlier, but there is no clear rule for when a point is an outlier. In one data set, a value of 1.1 may already be an outlier, in another dataset and parameterization (with strong local fluctuations) a value of 2 could still be an inlier.

  6. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  7. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    For example, given a = f(x) = a 0 x 0 + a 1 x 1 + ··· and b = g(x) = b 0 x 0 + b 1 x 1 + ···, the product ab is a specific value of W(x) = f(x)g(x). One may easily find points along W(x) at small values of x, and interpolation based on those points will yield the terms of W(x) and the specific product ab. As fomulated in Karatsuba ...

  8. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  9. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    ) and the interpolation problem consists of yielding values at arbitrary points (,,, … ) {\displaystyle (x,y,z,\dots )} . Multivariate interpolation is particularly important in geostatistics , where it is used to create a digital elevation model from a set of points on the Earth's surface (for example, spot heights in a topographic survey or ...