Search results
Results from the WOW.Com Content Network
If F is a field and p and q are not both zero, a polynomial d is a greatest common divisor if and only if it divides both p and q, and it has the greatest degree among the polynomials having this property. If p = q = 0, the GCD is 0. However, some authors consider that it is not defined in this case.
If one uses the Euclidean algorithm and the elementary algorithms for multiplication and division, the computation of the greatest common divisor of two integers of at most n bits is O(n 2). This means that the computation of greatest common divisor has, up to a constant factor, the same complexity as the multiplication.
Here, a greatest common divisor of a and b is an element d that divides both a and b, and such that every other common divisor of a and b divides d. All greatest common divisors of a and b are associated. Any UFD is integrally closed. In other words, if R is a UFD with quotient field K, and if an element k in K is a root of a monic polynomial ...
The greatest common divisor g of a and b is the unique (positive) common divisor of a and b that is divisible by any other common divisor c. [6] The greatest common divisor can be visualized as follows. [7] Consider a rectangular area a by b, and any common divisor c that divides both a and b exactly.
A third difference is that, in the polynomial case, the greatest common divisor is defined only up to the multiplication by a non zero constant. There are several ways to define unambiguously a greatest common divisor. In mathematics, it is common to require that the greatest common divisor be a monic polynomial.
Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials. Gauss's lemma asserts that the product of two primitive polynomials is primitive. (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2])
Greatest common divisor of two polynomials. Add languages. Add links. Article; ... Print/export Download as PDF; Printable version; From Wikipedia, the free encyclopedia.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.