Search results
Results from the WOW.Com Content Network
The decibel (dB) is one-tenth of a bel: 1 dB = 0.1 B. The bel (B) is 1 ⁄ 2 ln(10) nepers : 1 B = 1 ⁄ 2 ln(10) Np . The neper is the change in the level of a root-power quantity when the root-power quantity changes by a factor of e , that is 1 Np = ln(e) = 1 , thereby relating all of the units as nondimensional natural log of root-power ...
Dynamic range is therefore the signal-to-noise ratio (SNR) for the case where the signal is the loudest possible for the system. For example, if the ceiling of a device is 5 V (rms) and the noise floor is 10 μV (rms) then the dynamic range is 500000:1, or 114 dB:
1 dB = 1 / 20 ln 10 is the decibel. The commonly used reference sound power in air is [11] = . The proper notations for sound power level using this reference are L W/(1 pW) or L W (re 1 pW), but the suffix notations dB SWL, dB(SWL), dBSWL, or dB SWL are very common, even if they are not accepted by the SI. [12]
dBm or dB mW (decibel-milliwatts) is a unit of power level expressed using a logarithmic decibel (dB) scale respective to one milliwatt (mW). It is commonly used by radio, microwave and fiber-optical communication technicians & engineers to measure the power of system transmissions on a log scale , which can express both very large and very ...
So for a 16-bit digital system, the Dynamic Range is 20·log(2 16 − 1) ≈ 96 dB. Sample accuracy/synchronisation Not as much a specification as an ability. Since independent digital audio devices are each run by their own crystal oscillator, and no two crystals are exactly the same, sample rate will be slightly different. This will cause the ...
For very low-power systems, such as mobile phones, signal strength is usually expressed in dB-microvolts per metre (dBμV/m) or in decibels above a reference level of one milliwatt . In broadcasting terminology, 1 mV/m is 1000 μV/m or 60 dBμ (often written dBu). Examples. 100 dBμ or 100 mV/m: blanketing interference may occur on some receivers
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The dynamic range is much larger than fixed-point but at a cost of a worse signal-to-noise ratio. This makes floating-point preferable in situations where the dynamic range is large or unpredictable. Fixed-point's simpler implementations can be used with no signal quality disadvantage in systems where dynamic range is less than 6.02m.