Search results
Results from the WOW.Com Content Network
As with the (non-q) Chu–Vandermonde identity, there are several possible proofs of the q-Vandermonde identity.The following proof uses the q-binomial theorem.. One standard proof of the Chu–Vandermonde identity is to expand the product (+) (+) in two different ways.
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
where we use the convention that a i = 0 for all integers i > m and b j = 0 for all integers j > n. By the binomial theorem, (+) + = = + (+). Using the binomial theorem also for the exponents m and n, and then the above formula for the product of polynomials, we obtain
Download as PDF; Printable version; In other projects ... Cauchy binomial theorem is a special case of the q-binomial theorem. [3] ... R.I.: American Mathematical ...
The Leibniz rule bears a strong resemblance to the binomial theorem, and in fact the binomial theorem can be proven directly from the Leibniz rule by taking () = and () =, which gives ( a + b ) n e ( a + b ) x = e ( a + b ) x ∑ k = 0 n ( n k ) a n − k b k , {\displaystyle (a+b)^{n}e^{(a+b)x}=e^{(a+b)x}\sum _{k=0}^{n}{\binom {n}{k}}a^{n-k}b ...
Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then
The polynomial x p is additive. Indeed, for any a and b in the algebraic closure of k one has by the binomial theorem (+) = = ().Since p is prime, for all n = 1, ..., p−1 the binomial coefficient is divisible by p, which implies that
For larger positive integer values of n, the correct result is given by the binomial theorem. The name "freshman's dream" also sometimes refers to the theorem that says that for a prime number p, if x and y are members of a commutative ring of characteristic p, then (x + y) p = x p + y p.