Search results
Results from the WOW.Com Content Network
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
In mathematics, vector algebra may mean: The operations of vector addition and scalar multiplication of a vector space; The algebraic operations in vector calculus (vector analysis) – including the dot and cross products of 3-dimensional Euclidean space; Algebra over a field – a vector space equipped with a bilinear product
This is a list of formulas encountered in Riemannian geometry. Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors ...
In mathematics, vector multiplication may refer to one of several operations between two (or more) vectors. It may concern any of the following articles: Dot product – also known as the "scalar product", a binary operation that takes two vectors and returns a scalar quantity. The dot product of two vectors can be defined as the product of the ...
Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and properties in a concise, unambiguous, and accurate way. For example, the physicist Albert Einstein's formula = is the quantitative representation in mathematical notation of mass–energy equivalence. [1]
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
Basis Decomposition of a 2-vector. For vectors in R 3, the exterior algebra is closely related to the cross product and triple product.Using the standard basis {e 1, e 2, e 3}, the exterior product of a pair of vectors