enow.com Web Search

  1. Ads

    related to: remainder calculator polynomial solver formula math problems with solutions

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Polynomial_remainder_theorem

    In algebra, the polynomial remainder theorem or little Bézout's theorem (named after Étienne Bézout) [1] is an application of Euclidean division of polynomials.It states that, for every number , any polynomial is the sum of () and the product by of a polynomial in of degree less than the degree of .

  3. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  4. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]

  5. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division can be used to find the equation of the line that is tangent to the graph of the function defined by the polynomial P(x) at a particular point x = r. [3] If R ( x ) is the remainder of the division of P ( x ) by ( x – r ) 2 , then the equation of the tangent line at x = r to the graph of the function y = P ( x ) is y ...

  6. Chinese remainder theorem - Wikipedia

    en.wikipedia.org/wiki/Chinese_remainder_theorem

    The set of the solutions of these two first equations is the set of all solutions of the equation x ≡ a 1 , 2 ( mod n 1 n 2 ) . {\displaystyle x\equiv a_{1,2}{\pmod {n_{1}n_{2}}}.} As the other n i {\displaystyle n_{i}} are coprime with n 1 n 2 , {\displaystyle n_{1}n_{2},} this reduces solving the initial problem of k equations to a similar ...

  7. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  8. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  9. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    At –∞ the sign of a polynomial is the sign of its leading coefficient for a polynomial of even degree, and the opposite sign for a polynomial of odd degree. In the case of a non-square-free polynomial, if neither a nor b is a multiple root of p, then V(a) − V(b) is the number of distinct real roots of P.

  1. Ads

    related to: remainder calculator polynomial solver formula math problems with solutions