enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    The resulting values are quotient-values and hard to interpret. A value of 1 or even less indicates a clear inlier, but there is no clear rule for when a point is an outlier. In one data set, a value of 1.1 may already be an outlier, in another dataset and parameterization (with strong local fluctuations) a value of 2 could still be an inlier.

  3. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  4. Cochran's C test - Wikipedia

    en.wikipedia.org/wiki/Cochran's_C_test

    Cochran's test, [1] named after William G. Cochran, is a one-sided upper limit variance outlier statistical test .The C test is used to decide if a single estimate of a variance (or a standard deviation) is significantly larger than a group of variances (or standard deviations) with which the single estimate is supposed to be comparable.

  5. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    A typical strategy to account for, without eliminating altogether, these outlier values is to 'reset' outliers to a specified percentile (or an upper and lower percentile) of the data. For example, a 90% winsorization would see all data below the 5th percentile set to the 5th percentile, and all data above the 95th percentile set to the 95th ...

  6. Accumulated local effects - Wikipedia

    en.wikipedia.org/wiki/Accumulated_local_effects

    ALE uses a conditional feature distribution as an input and generates augmented data, creating more realistic data than a marginal distribution. [2] It ignores far out-of-distribution (outlier) values. [1] Unlike partial dependence plots and marginal plots, ALE is not defeated in the presence of correlated predictors. [3]

  7. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    The formula then divides by () to account for the fact that we remove the observation rather than adjusting its value, reflecting the fact that removal changes the distribution of covariates more when applied to high-leverage observations (i.e. with outlier covariate values). Similar formulas arise when applying general formulas for statistical ...

  8. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    There are several types of data cleaning, that are dependent upon the type of data in the set; this could be phone numbers, email addresses, employers, or other values. [26] [27] Quantitative data methods for outlier detection, can be used to get rid of data that appears to have a higher likelihood of being input incorrectly. [28]

  9. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    In data sets containing real-numbered measurements, the suspected outliers are the measured values that appear to lie outside the cluster of most of the other data values. The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of location.

  1. Related searches examples of outlier values in python data warehouse project manager job description

    local outlier factor explainedlocal outlier factor formula
    local outlier factor algorithm