enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  3. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/.../Constraint_satisfaction_problem

    Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods.

  4. Constraint satisfaction - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction

    Constraint propagation methods are also used in conjunction with search to make a given problem simpler to solve. Other considered kinds of constraints are on real or rational numbers; solving problems on these constraints is done via variable elimination or the simplex algorithm.

  5. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    A problem is said to be NP-hard if everything in NP can be transformed in polynomial time into it even though it may not be in NP. A problem is NP-complete if it is both in NP and NP-hard. The NP-complete problems represent the hardest problems in NP. If some NP-complete problem has a polynomial time algorithm, all problems in NP do.

  6. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...

  7. Dutch national flag problem - Wikipedia

    en.wikipedia.org/wiki/Dutch_national_flag_problem

    The Dutch national flag problem [1] is a computational problem proposed by Edsger Dijkstra. [2] The flag of the Netherlands consists of three colors: red, white, and blue. Given balls of these three colors arranged randomly in a line (it does not matter how many balls there are), the task is to arrange them such that all balls of the same color ...

  8. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    The partition problem is a special case of two related problems: In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S).

  9. Particle swarm optimization - Wikipedia

    en.wikipedia.org/wiki/Particle_swarm_optimization

    It solves a problem by having a population of candidate solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical formulae over the particle's position and velocity. Each particle's movement is influenced by its local best known position, but is also guided toward the best known ...