Search results
Results from the WOW.Com Content Network
The Digital Signature Algorithm (DSA) is a public-key cryptosystem and Federal Information Processing Standard for digital signatures, based on the mathematical concept of modular exponentiation and the discrete logarithm problem.
SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm . Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.
SHA-1: 1995 SHA-0: Specification: SHA-256 SHA-384 SHA-512: 2002 SHA-224: 2004 SHA-3 (Keccak) 2008 Guido Bertoni Joan Daemen Michaël Peeters Gilles Van Assche: RadioGatún: Website Specification: Streebog: 2012 FSB, InfoTeCS JSC RFC 6986: Tiger: 1995 Ross Anderson Eli Biham: Website Specification: Whirlpool: 2004 Vincent Rijmen Paulo Barreto ...
SHACAL-1 turns the SHA-1 compression function into a block cipher by using the state input as the data block and using the data input as the key input. In other words, SHACAL-1 views the SHA-1 compression function as an 80-round, 160-bit block cipher with a 512-bit key. Keys shorter than 512 bits are supported by padding them with zeros.
SHA-1: 160 bits Merkle–Damgård construction: SHA-224: 224 bits Merkle–Damgård construction: SHA-256: 256 bits Merkle–Damgård construction: SHA-384: 384 bits Merkle–Damgård construction: SHA-512: 512 bits Merkle–Damgård construction: SHA-3 (subset of Keccak) arbitrary sponge function: Skein: arbitrary Unique Block Iteration ...
A cryptographic hash method H (default is SHA-1) A secret key K, which is an arbitrary byte string and must remain private; A counter C, which counts the number of iterations; A HOTP value length d (6–10, default is 6, and 6–8 is recommended) Both parties compute the HOTP value derived from the secret key K and the counter C. Then the ...
Nobody has been able to break SHA-1, but the point is the SHA-1, as far as Git is concerned, isn't even a security feature. It's purely a consistency check. The security parts are elsewhere, so a lot of people assume that since Git uses SHA-1 and SHA-1 is used for cryptographically secure stuff, they think that, Okay, it's a huge security feature.
Password is the master password from which a derived key is generated; Salt is a sequence of bits, known as a cryptographic salt; c is the number of iterations desired; dkLen is the desired bit-length of the derived key; DK is the generated derived key; Each hLen-bit block T i of derived key DK, is computed as follows (with + marking string ...