Search results
Results from the WOW.Com Content Network
Conversely, precision can be lost when converting representations from integer to floating-point, since a floating-point type may be unable to exactly represent all possible values of some integer type. For example, float might be an IEEE 754 single precision type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied. Languages that support a rational data type usually allow the construction of such a value from two integers, instead of a base-2 floating-point number, due to the loss of exactness the latter would cause.
An exception is Microsoft Visual C++ for x86, which makes long double a synonym for double. [2] The Intel C++ compiler on Microsoft Windows supports extended precision, but requires the /Qlong‑double switch for long double to correspond to the hardware's extended precision format. [3] Compilers may also use long double for the IEEE 754 ...
On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc [13] and the Intel C++ Compiler with a /Qlong‑double switch [14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++ [15]), rather than as quadruple precision.
Quadruple-precision floating-point format; Octuple-precision floating-point format; Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format has been increasing especially in the field of machine learning since many ...
C++ template library C library Python wrapper Golang library Arbitrary precision posit float valid (p) Unum type 1 (p) Unum type 2 (p) Arbitrary quire configurations with programmable capacity posit<4,0> 1 GPOPS posit<8,0> 130 MPOPS posit<16,1> 115 MPOPS posit<32,2> 105 MPOPS posit<64,3> 50 MPOPS posit<128,4> 1 MPOPS posit<256,5> 800 KPOPS
Real floating-point type, usually referred to as a double-precision floating-point type. Actual properties unspecified (except minimum limits); however, on most systems, this is the IEEE 754 double-precision binary floating-point format (64 bits). This format is required by the optional Annex F "IEC 60559 floating-point arithmetic".