Search results
Results from the WOW.Com Content Network
The gravitational redshift of a light wave as it moves upwards against a gravitational field (produced by the yellow star below). The effect is greatly exaggerated in this diagram. In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) [1][2] is the phenomenon that electromagnetic waves or ...
The effect of a finite speed of gravity goes to zero as c goes to infinity, but not as 1/c 2 as it does in modern theories. This led Laplace to conclude that the speed of gravitational interactions is at least 7 × 10 6 times the speed of light.
v. t. e. Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the ...
Newton wondered whether light, in the form of corpuscles, would be bent due to gravity. The Newtonian prediction for light deflection refers to the amount of deflection a corpuscle would feel under the effect of gravity, and therefore one should read "Newtonian" in this context as the referring to the following calculations and not a belief ...
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.
General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation ...
Electromagnetism has an infinite range, as gravity does, but is vastly stronger. It is the force that binds electrons to atoms, and it holds molecules together. It is responsible for everyday phenomena like light, magnets, electricity, and friction.
t. e. Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated ...