enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Darcy's law - Wikipedia

    en.wikipedia.org/wiki/Darcy's_law

    Darcy's law. Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell. The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.

  3. Multiphase flow - Wikipedia

    en.wikipedia.org/wiki/Multiphase_flow

    Multiphase flow. Sketch of multiphase flow in an oil pipe, where the continuous phase is the liquid (blue) carrying smaller particles. Gas (white) and oil particles (black) are in a disperse phase. In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. [ 1 ]

  4. Fluid flow through porous media - Wikipedia

    en.wikipedia.org/wiki/Fluid_flow_through_porous...

    In fluid mechanics, fluid flow through porous media is the manner in which fluids behave when flowing through a porous medium, for example sponge or wood, or when filtering water using sand or another porous material. As commonly observed, some fluid flows through the media while some mass of the fluid is stored in the pores present in the ...

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    hide. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  6. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The following table lists historical approximations to the Colebrook–White relation [23] for pressure-driven flow. Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for ...

  7. Capillary number - Wikipedia

    en.wikipedia.org/wiki/Capillary_number

    Capillary number. In fluid dynamics, the capillary number (Ca) is a dimensionless quantity representing the relative effect of viscous drag forces versus surface tension forces acting across an interface between a liquid and a gas, or between two immiscible liquids. Alongside the Bond number, commonly denoted , this term is useful to describe ...

  8. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [1] [2] [3] A key question is the uniformity of the flow distribution and pressure drop. Fig. 1. Manifold arrangement for flow distribution. Traditionally, most of theoretical models are based on Bernoulli equation after taking the frictional losses into account using a control volume (Fig. 2). The frictional loss is described using the Darcy ...

  9. Permeability (materials science) - Wikipedia

    en.wikipedia.org/wiki/Permeability_(Materials...

    A practical unit for permeability is the darcy (d), or more commonly the millidarcy (md) (1 d ≈ 10 −12 m 2). The name honors the French Engineer Henry Darcy who first described the flow of water through sand filters for potable water supply. Permeability values for most materials commonly range typically from a fraction to several thousand ...