Search results
Results from the WOW.Com Content Network
Lagrange solved this problem in 1755 and sent the solution to Euler. Both further developed Lagrange's method and applied it to mechanics, which led to the formulation of Lagrangian mechanics. Their correspondence ultimately led to the calculus of variations, a term coined by Euler himself in 1766. [3]
Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]
Joseph-Louis Lagrange (1736–1813). In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action).
Hilbert was the first to give good conditions for the Euler–Lagrange equations to give a stationary solution. Within a convex area and a positive thrice differentiable Lagrangian the solutions are composed of a countable collection of sections that either go along the boundary or satisfy the Euler–Lagrange equations in the interior.
In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...
The free Euler equations are conservative, in the sense they are equivalent to a conservation equation: + =, or simply in Einstein notation: + =, where the conservation quantity in this case is a vector, and is a flux matrix. This can be simply proved.
A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y.. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ (Y) of exterior forms on jet manifolds of Y → X.
Pierre Louis Maupertuis and Leonhard Euler working in the 1740s developed early versions of the action principle. Joseph Louis Lagrange clarified the mathematics when he invented the calculus of variations. William Rowan Hamilton made the next big breakthrough, formulating Hamilton's principle in 1853.