Ads
related to: example of terms in math algebra definitionkutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In the context of proofs, this phrase is often seen in induction arguments when passing from the base case to the induction step, and similarly, in the definition of sequences whose first few terms are exhibited as examples of the formula giving every term of the sequence. necessary and sufficient
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
For example, 2+2 is a ground term and hence also a linear term, x⋅(n+1) is a linear term, n⋅(n+1) is a non-linear term. These properties are important in, for example, term rewriting. Given a signature for the function symbols, the set of all terms forms the free term algebra. The set of all ground terms forms the initial term algebra.
In mathematics, a constant term (sometimes referred to as a free term) is a term in an algebraic expression that does not contain any variables and therefore is constant. For example, in the quadratic polynomial, + +, The number 3 is a constant term. [1]
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
For example: "All humans are mortal, and Socrates is a human. ∴ Socrates is mortal." ∵ Abbreviation of "because" or "since". Placed between two assertions, it means that the first one is implied by the second one. For example: "11 is prime ∵ it has no positive integer factors other than itself and one." ∋ 1. Abbreviation of "such that".
As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.
In mathematics and particularly in algebra, a system of equations (either linear or nonlinear) is called consistent if there is at least one set of values for the unknowns that satisfies each equation in the system—that is, when substituted into each of the equations, they make each equation hold true as an identity.
Ads
related to: example of terms in math algebra definitionkutasoftware.com has been visited by 10K+ users in the past month