enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    Given the binary nature of classification, a natural selection for a loss function (assuming equal cost for false positives and false negatives) would be the 0-1 loss function (0–1 indicator function), which takes the value of 0 if the predicted classification equals that of the true class or a 1 if the predicted classification does not match ...

  3. Huber loss - Wikipedia

    en.wikipedia.org/wiki/Huber_loss

    Two very commonly used loss functions are the squared loss, () =, and the absolute loss, () = | |.The squared loss function results in an arithmetic mean-unbiased estimator, and the absolute-value loss function results in a median-unbiased estimator (in the one-dimensional case, and a geometric median-unbiased estimator for the multi-dimensional case).

  4. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with ...

  5. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  6. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    There, () is the value of the loss function at -th example, and () is the empirical risk. When used to minimize the above function, a standard (or "batch") gradient descent method would perform the following iterations: w := w − η ∇ Q ( w ) = w − η n ∑ i = 1 n ∇ Q i ( w ) . {\displaystyle w:=w-\eta \,\nabla Q(w)=w-{\frac {\eta }{n ...

  7. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    The loss function also affects the convergence rate for an algorithm. It is important for the loss function to be convex. [5] Different loss functions are used depending on whether the problem is one of regression or one of classification.

  8. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that direction. A too high learning rate will make the learning jump over minima but a too low learning rate will either take too long to converge or get stuck in an undesirable local minimum.

  9. Elastic net regularization - Wikipedia

    en.wikipedia.org/wiki/Elastic_net_regularization

    The quadratic penalty term makes the loss function strongly convex, and it therefore has a unique minimum. The elastic net method includes the LASSO and ridge regression: in other words, each of them is a special case where λ 1 = λ , λ 2 = 0 {\displaystyle \lambda _{1}=\lambda ,\lambda _{2}=0} or λ 1 = 0 , λ 2 = λ {\displaystyle \lambda ...