enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .

  3. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    Figure 1: A de Laval nozzle, showing approximate flow velocity increasing from green to red in the direction of flow Density flow in a nozzle. A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate combustion products to high supersonic velocities.

  4. Nozzle - Wikipedia

    en.wikipedia.org/wiki/Nozzle

    A de Laval nozzle has a convergent section followed by a divergent section and is often called a convergent-divergent (CD) nozzle ("con-di nozzle"). Convergent nozzles accelerate subsonic fluids. If the nozzle pressure ratio is high enough, then the flow will reach sonic velocity at the narrowest point (i.e. the nozzle throat).

  5. Propelling nozzle - Wikipedia

    en.wikipedia.org/wiki/Propelling_nozzle

    The Jumo 004 had a large area for starting to prevent overheating the turbine and a smaller area for take-off and flight to give higher exhaust velocity and thrust. The 004's Zwiebel possessed a 40 cm (16 in) range of forward/reverse travel to vary the exhaust nozzle area, driven by an electric motor-driven mechanism within the body's divergent ...

  6. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...

  7. Jet engine - Wikipedia

    en.wikipedia.org/wiki/Jet_engine

    When a de Laval nozzle is used to accelerate a hot engine exhaust, the outlet velocity may be locally supersonic. Turbojets are particularly suitable for aircraft travelling at very high speeds. Turbofans have a mixed exhaust consisting of the bypass air and the hot combustion product gas from the core engine.

  8. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    Due to various losses in real engines, the actual exhaust velocity is different from the I sp "velocity" (and for cars there isn't even a sensible definition of "actual exhaust velocity"). Rather, the specific impulse is just that: a physical momentum from a physical quantity of propellant (be that in mass or weight).

  9. Rocket engine - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine

    RS-68 being tested at NASA's Stennis Space Center Viking 5C rocket engine used on Ariane 1 through Ariane 4. A rocket engine is a reaction engine, producing thrust in accordance with Newton's third law by ejecting reaction mass rearward, usually a high-speed jet of high-temperature gas produced by the combustion of rocket propellants stored inside the rocket.