Search results
Results from the WOW.Com Content Network
Any black box containing resistances only and voltage and current sources can be replaced by an equivalent circuit consisting of an equivalent current source in parallel connection with an equivalent resistance. Edward Lawry Norton. In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification ...
They can be performed on a circuit involving capacitors and inductors as well, by expressing circuit elements as impedances and sources in the frequency domain. In general, the concept of source transformation is an application of Thévenin's theorem to a current source, or Norton's theorem to a voltage source. However, this means that source ...
parallel – series (circuits) resistance – conductance; voltage division – current division; impedance – admittance; capacitance – inductance; reactance – susceptance; short circuit – open circuit; Kirchhoff's current law – Kirchhoff's voltage law. KVL and KCL; Thévenin's theorem – Norton's theorem
Often, an equivalent circuit is sought that simplifies calculation, and more broadly, that is a simplest form of a more complex circuit in order to aid analysis. [1] In its most common form, an equivalent circuit is made up of linear, passive elements. However, more complex equivalent circuits are used that approximate the nonlinear behavior of ...
Edward Lawry Norton (July 28, 1898 – January 28, 1983) was an accomplished engineer and scientist. He worked at Bell Labs and is known for Norton's theorem.. His areas of active research included network theory, acoustical systems, electromagnetic apparatus, and data transmission.
A generator, because this tangent will not, in general, pass through the origin. With more terminals, more complicated equivalent circuits are required. A popular form of specifying the small signal equivalent circuit amongst transistor manufacturers is to use the two-port network parameters known as [h] parameters. These are a matrix of four ...
Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here; the individual linked articles should be consulted. The number of equivalent circuits that a linear network can be transformed into is unbounded.
Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response. [ 8 ] [ 9 ] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent ; use of the theorem may in some cases be more convenient ...