Search results
Results from the WOW.Com Content Network
There are three main types of computer environments for studying school geometry: supposers [vague], dynamic geometry environments (DGEs) and Logo-based programs. [2] Most are DGEs: software that allows the user to manipulate ("drag") the geometric object into different shapes or positions.
The algorithm selects one point p randomly and uniformly from P, and recursively finds the minimal circle containing P – {p}, i.e. all of the other points in P except p. If the returned circle also encloses p, it is the minimal circle for the whole of P and is returned. Otherwise, point p must lie on the boundary of the result circle.
A Poincaré disk showing the hypercycle HC that is determined by the straight line L (termed straight because it cuts the horizon at right angles) and point P. In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis).
In the chapter on non-Euclidean geometry, the topics include the Poincaré disk model of the hyperbolic plane, elliptic geometry, spherical geometry, and (in line with Felix Klein's Erlangen program) the transformation groups of these geometries as subgroups of Möbious transformations.
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
Poincaré disk with hyperbolic parallel lines Poincaré disk model of the truncated triheptagonal tiling.. In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or ...
The most famous of these problems, squaring the circle, otherwise known as the quadrature of the circle, involves constructing a square with the same area as a given circle using only straightedge and compass. Squaring the circle has been proved impossible, as it involves generating a transcendental number, that is, √ π.
The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.