enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    The outliers would greatly change the estimate of location if the arithmetic average were to be used as a summary statistic of location. The problem is that the arithmetic mean is very sensitive to the inclusion of any outliers; in statistical terminology, the arithmetic mean is not robust.

  3. Mean - Wikipedia

    en.wikipedia.org/wiki/Mean

    Sometimes, a set of numbers might contain outliers (i.e., data values which are much lower or much higher than the others). Often, outliers are erroneous data caused by artifacts. In this case, one can use a truncated mean. It involves discarding given parts of the data at the top or the bottom end, typically an equal amount at each end and ...

  4. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    The RMSD of predicted values ^ for times t of a regression's dependent variable, with variables observed over T times, is computed for T different predictions as the square root of the mean of the squares of the deviations:

  5. Robust statistics - Wikipedia

    en.wikipedia.org/wiki/Robust_statistics

    The outliers in the speed-of-light data have more than just an adverse effect on the mean; the usual estimate of scale is the standard deviation, and this quantity is even more badly affected by outliers because the squares of the deviations from the mean go into the calculation, so the outliers' effects are exacerbated.

  6. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    The bootstrap is generally useful for estimating the distribution of a statistic (e.g. mean, variance) without using normality assumptions (as required, e.g., for a z-statistic or a t-statistic). In particular, the bootstrap is useful when there is no analytical form or an asymptotic theory (e.g., an applicable central limit theorem ) to help ...

  7. Truncated mean - Wikipedia

    en.wikipedia.org/wiki/Truncated_mean

    A truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median. It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually ...

  8. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  9. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set