Search results
Results from the WOW.Com Content Network
In computer science, a deterministic algorithm is an algorithm that, given a particular input, will always produce the same output, with the underlying machine always passing through the same sequence of states. Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they ...
There may be non-deterministic algorithms that run on a deterministic machine, for example, an algorithm that relies on random choices. Generally, for such random choices, one uses a pseudorandom number generator , but one may also use some external physical process, such as the last digits of the time given by the computer clock.
Deterministic refers to the uniqueness of the computation run. In search of the simplest models to capture finite-state machines, Warren McCulloch and Walter Pitts were among the first researchers to introduce a concept similar to finite automata in 1943. [2] [3] The figure illustrates a deterministic finite automaton using a state diagram.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
An early computer-based PRNG, suggested by John von Neumann in 1946, is known as the middle-square method. The algorithm is as follows: take any number, square it, remove the middle digits of the resulting number as the "random number", then use that number as the seed for the next iteration.
There are ways of using probabilities that are definitely not Monte Carlo simulations – for example, deterministic modeling using single-point estimates. Each uncertain variable within a model is assigned a "best guess" estimate. Scenarios (such as best, worst, or most likely case) for each input variable are chosen and the results recorded. [61]
If there is an algorithm (say a Turing machine, or a computer program with unbounded memory) that produces the correct answer for any input string of length n in at most cn k steps, where k and c are constants independent of the input string, then we say that the problem can be solved in polynomial time and we place it in the class P. Formally ...