enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    An important property of base-10 logarithms, which makes them so useful in calculations, is that the logarithm of numbers greater than 1 that differ by a factor of a power of 10 all have the same fractional part. The fractional part is known as the mantissa. [b] Thus, log tables need only show the fractional part. Tables of common logarithms ...

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  5. Pollard's rho algorithm for logarithms - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm_for...

    Let be a cyclic group of order , and given ,, and a partition =, let : be the map = {and define maps : and : by (,) = {() + (,) = {+ ()input: a: a generator of G b: an element of G output: An integer x such that a x = b, or failure Initialise i ← 0, a 0 ← 0, b 0 ← 0, x 0 ← 1 ∈ G loop i ← i + 1 x i ← f(x i−1), a i ← g(x i−1, a i−1), b i ← h(x i−1, b i−1) x 2i−1 ← ...

  6. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    The algorithm is used to factorize a number =, where is a non-trivial factor. A polynomial modulo , called () (e.g., () = (+)), is used to generate a pseudorandom sequence.It is important to note that () must be a polynomial.

  7. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series

  8. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]

  9. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    Graph of log 2 x as a function of a positive real number x. In mathematics, the binary logarithm (log 2 n) is the power to which the number 2 must be raised to obtain the value n. That is, for any real number x, = ⁡ =.