enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prismatoid - Wikipedia

    en.wikipedia.org/wiki/Prismatoid

    Prismatoid with parallel faces A 1 and A 3, midway cross-section A 2, and height h. In geometry, a prismatoid is a polyhedron whose vertices all lie in two parallel planes. Its lateral faces can be trapezoids or triangles. [1] If both planes have the same number of vertices, and the lateral faces are either parallelograms or trapezoids, it is ...

  3. Prism (geometry) - Wikipedia

    en.wikipedia.org/wiki/Prism_(geometry)

    The volume of a prism is the product of the area of the base by the height, i.e. the distance between the two base faces (in the case of a non-right prism, note that this means the perpendicular distance). The volume is therefore: =, where B is the base area and h is the height.

  4. Contact area - Wikipedia

    en.wikipedia.org/wiki/Contact_area

    In relation to two contacting objects, the contact area is the part of the nominal area that consists of atoms of one object in true contact with the atoms of the other object. Because objects are never perfectly flat due to asperities , the actual contact area (on a microscopic scale) is usually much less than the contact area apparent on a ...

  5. Associahedron - Wikipedia

    en.wikipedia.org/wiki/Associahedron

    For instance, the two triangulations of the unit square give rise in this way to two four-dimensional points with coordinates (1, 1/2, 1, 1/2) and (1/2, 1, 1/2, 1). The convex hull of these two points is the realization of the associahedron K 3. Although it lives in a 4-dimensional space, it forms a line segment (a 1-dimensional polytope ...

  6. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    A ridge is seen as the boundary between exactly two facets of a polytope or honeycomb. For example: The ridges of a 2D polygon or 1D tiling are its 0-faces or vertices. The ridges of a 3D polyhedron or plane tiling are its 1-faces or edges. The ridges of a 4D polytope or 3-honeycomb are its 2-faces or simply faces.

  7. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Any two opposite edges of a tetrahedron lie on two skew lines, and the distance between the edges is defined as the distance between the two skew lines. Let d {\displaystyle d} be the distance between the skew lines formed by opposite edges a {\displaystyle a} and b − c {\displaystyle \mathbf {b} -\mathbf {c} } as calculated here .

  8. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus

  9. Triangular prism - Wikipedia

    en.wikipedia.org/wiki/Triangular_prism

    The dihedral angle between two adjacent square faces is the internal angle of an equilateral triangle π /3 = 60°, and that between a square and a triangle is π /2 = 90°. [7] The volume of any prism is the product of the area of the base and the distance between the two bases. [8]