enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)!

  3. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    In mathematics, the factorial of a non-negative integer, denoted by !, is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: ! = () = ()! For example, ! =! = =

  4. Multiple factor analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_factor_analysis

    Multiple factor analysis (MFA) is a factorial method [1] devoted to the study of tables in which a group of individuals is described by a set of variables (quantitative and / or qualitative) structured in groups. It is a multivariate method from the field of ordination used to simplify multidimensional data structures. MFA treats all involved ...

  5. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    Let be a natural number. For a base >, we define the sum of the factorials of the digits [5] [6] of , :, to be the following: ⁡ = =!. where = ⌊ ⁡ ⌋ + is the number of digits in the number in base , ! is the factorial of and

  6. Bhargava factorial - Wikipedia

    en.wikipedia.org/wiki/Bhargava_factorial

    The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]

  7. Hyperfactorial - Wikipedia

    en.wikipedia.org/wiki/Hyperfactorial

    The hyperfactorials were studied beginning in the 19th century by Hermann Kinkelin [3] [4] and James Whitbread Lee Glaisher. [5] [4] As Kinkelin showed, just as the factorials can be continuously interpolated by the gamma function, the hyperfactorials can be continuously interpolated by the K-function.

  8. SageMath - Wikipedia

    en.wikipedia.org/wiki/SageMath

    SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation" [3]) is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, group theory, differentiable manifolds, numerical analysis, number theory, calculus and statistics.

  9. Numerical method - Wikipedia

    en.wikipedia.org/wiki/Numerical_method

    Let (,) = be a well-posed problem, i.e. : is a real or complex functional relationship, defined on the cross-product of an input data set and an output data set , such that exists a locally lipschitz function : called resolvent, which has the property that for every root (,) of , = ().