enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

  3. Positive definiteness - Wikipedia

    en.wikipedia.org/wiki/Positive_definiteness

    In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: Positive-definite bilinear form; Positive-definite function; Positive-definite function on a group; Positive-definite functional; Positive-definite kernel

  4. Positive form - Wikipedia

    en.wikipedia.org/wiki/Positive_form

    A form is called strongly positive if it is a linear combination of products of semi-positive forms, with positive real coefficients. A real (p, p) -form η {\displaystyle \eta } on an n -dimensional complex manifold M is called weakly positive if for all strongly positive (n-p, n-p) -forms ζ with compact support, we have ∫ M η ∧ ζ ≥ 0 ...

  5. Mercer's theorem - Wikipedia

    en.wikipedia.org/wiki/Mercer's_theorem

    It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used in the reproducing kernel Hilbert space theory where it characterizes a symmetric positive-definite kernel as a reproducing kernel. [1]

  6. Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Galerkin_method

    Ritz–Galerkin method (after Walther Ritz) typically assumes symmetric and positive definite bilinear form in the weak formulation, where the differential equation for a physical system can be formulated via minimization of a quadratic function representing the system energy and the approximate solution is a linear combination of the given set ...

  7. Totally positive matrix - Wikipedia

    en.wikipedia.org/wiki/Totally_positive_matrix

    A totally positive matrix has all entries positive, so it is also a positive matrix; and it has all principal minors positive (and positive eigenvalues). A symmetric totally positive matrix is therefore also positive-definite. A totally non-negative matrix is defined similarly, except that all the minors must be non-negative (positive or zero ...

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For elliptic partial differential equations this matrix is positive definite, which has a decisive influence on the set of possible solutions of the equation in question. [86] The finite element method is an important numerical method to solve partial differential equations, widely applied in simulating complex physical systems. It attempts to ...

  9. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    This makes a positive definite matrix. More properties of controllable systems can be found in Chen (1999 , p. 145 ), as well as the proof for the other equivalent statements of “The pair ( A , B ) {\displaystyle ({\boldsymbol {A}},{\boldsymbol {B}})} is controllable” presented in section Controllability in LTI Systems.

  1. Related searches positive definite checker meaning example answer list printable word document

    positive definite functionpositive defined functions
    positive and negative definition