Search results
Results from the WOW.Com Content Network
A plane mirror showing the virtual image of an urn nearby. A diagram of an object in two plane mirrors that formed an angle bigger than 90 degrees, causing the object to have three reflections. A plane mirror is a mirror with a flat reflective surface. [1] [2] For light rays striking a plane mirror, the angle of reflection equals the angle of ...
In geometry, the mirror image of an object or two-dimensional figure is the virtual image formed by reflection in a plane mirror; it is of the same size as the original object, yet different, unless the object or figure has reflection symmetry (also known as a P-symmetry).
The magnification of the virtual image formed by the plane mirror is 1. Top: The formation of a virtual image using a diverging lens. Bottom: The formation of a virtual image using a convex mirror. In both diagrams, f is the focal point, O is the object, and I is the virtual image, shown in grey. Solid blue lines indicate (real) light rays and ...
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
The cardinal points were all included in a single diagram as early as 1864 (Donders), with the object in air and the image in a different medium. Cardinal point diagram for an optical system with different media on each side. F for Focal point, P for Principal point, NP for Nodal Point, and efl for effective focal length. The chief ray is shown ...
The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis (a vertical reflection) would look like q. Its image by reflection in a horizontal axis (a horizontal reflection) would look like b.
Bottom: The formation of a real image using a concave mirror. In both diagrams, f is the focal point, O is the object, and I is the image. Solid blue lines indicate light rays. It can be seen that the image is formed by actual light rays and thus can form a visible image on a screen placed at the position of the image.
Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2. (F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c. The line L is called the reflection axis or the associated mirror.