enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  3. Summed-area table - Wikipedia

    en.wikipedia.org/wiki/Summed-area_table

    This method is naturally extended to continuous domains. [2]The method can be also extended to high-dimensional images. [6] If the corners of the rectangle are with in {,}, then the sum of image values contained in the rectangle are computed with the formula {,} ‖ ‖ where () is the integral image at and the image dimension.

  4. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]

  5. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    The number of representations of a natural number n as the sum of four squares of integers is denoted by r 4 (n). Jacobi's four-square theorem states that this is eight times the sum of the divisors of n if n is odd and 24 times the sum of the odd divisors of n if n is even (see divisor function), i.e.

  6. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem . The input to the problem is a multiset S {\displaystyle S} of n integers and a positive integer m representing the number of subsets.

  7. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    Another example is attempting to make 40 US cents without nickels (denomination 25, 10, 1) with similar result — the greedy chooses seven coins (25, 10, and 5 × 1), but the optimal is four (4 × 10). A coin system is called "canonical" if the greedy algorithm always solves its change-making problem optimally.

  8. Reservoir sampling - Wikipedia

    en.wikipedia.org/wiki/Reservoir_sampling

    Reservoir sampling is a family of randomized algorithms for choosing a simple random sample, without replacement, of k items from a population of unknown size n in a single pass over the items.

  9. Set cover problem - Wikipedia

    en.wikipedia.org/wiki/Set_cover_problem

    A fractional set cover is an assignment of a fraction (a number in [0,1]) to each set in , such that for each element x in the universe, the sum of fractions of sets that contain x is at least 1. The goal is to find a fractional set cover in which the sum of fractions is as small as possible.