Search results
Results from the WOW.Com Content Network
Modular exponentiation is efficient to compute, even for very large integers. On the other hand, computing the modular discrete logarithm – that is, finding the exponent e when given b, c, and m – is believed to be difficult. This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms.
The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.
This can be accomplished via modular exponentiation, which is the slowest part of the algorithm. The gate thus defined satisfies U r = I {\displaystyle U^{r}=I} , which immediately implies that its eigenvalues are the r {\displaystyle r} -th roots of unity ω r k = e 2 π i k / r {\displaystyle \omega _{r}^{k}=e^{2\pi ik/r}} .
RSA and Diffie–Hellman use modular exponentiation. In computer algebra, modular arithmetic is commonly used to limit the size of integer coefficients in intermediate calculations and data. It is used in polynomial factorization, a problem for which all known efficient algorithms use modular arithmetic.
Exponentiation with Montgomery reduction O ( M ( n ) k ) {\displaystyle O(M(n)\,k)} On stronger computational models, specifically a pointer machine and consequently also a unit-cost random-access machine it is possible to multiply two n -bit numbers in time O ( n ).
In mathematics, modular arithmetic is a system of arithmetic for certain equivalence classes of integers, called congruence classes. Sometimes it is suggestively called 'clock arithmetic', where numbers 'wrap around' after they reach a certain value (the modulus). For example, when the modulus is 12, then any two numbers that leave the same ...
The addition formulae involve taking the modular slope of a chord joining and , and thus division between residue classes modulo , performed using the extended Euclidean algorithm. In particular, division by some v mod n {\displaystyle v{\bmod {n}}} includes calculation of the gcd ( v , n ) {\displaystyle \gcd(v,n)} .
As modular forms also satisfy a certain kind of functional equation with respect to the group action of the modular group, this Fourier series may be expressed in terms of =. So if f {\displaystyle f} is a modular form, then there are coefficients c ( n ) {\displaystyle c(n)} such that f ( z ) = ∑ n ∈ N c ( n ) q n {\displaystyle f(z)=\sum ...