Search results
Results from the WOW.Com Content Network
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
A droplet with a diameter of 3 mm has a terminal velocity of approximately 8 m/s. [5] Drops smaller than 1 mm in diameter will attain 95% of their terminal velocity within 2 m. But above this size the distance to get to terminal velocity increases sharply. An example is a drop with a diameter of 2 mm that may achieve this at 5.6 m. [5]
ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by
Roman numerals: for example the word "six" in the clue might be used to indicate the letters VI; The name of a chemical element may be used to signify its symbol; e.g., W for tungsten; The days of the week; e.g., TH for Thursday; Country codes; e.g., "Switzerland" can indicate the letters CH; ICAO spelling alphabet: where Mike signifies M and ...
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and lift the liquid to form vapour bubbles ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Language links are at the top of the page across from the title.
In fluid dynamics, the pressure coefficient is a dimensionless number which describes the relative pressures throughout a flow field. The pressure coefficient is used in aerodynamics and hydrodynamics. Every point in a fluid flow field has its own unique pressure coefficient, C p.