Search results
Results from the WOW.Com Content Network
Creep and shrinkage of concrete are two physical properties of concrete. The creep of concrete, which originates from the calcium silicate hydrates (C-S-H) in the hardened Portland cement paste (which is the binder of mineral aggregates), is fundamentally different from the creep of metals and polymers.
It models concrete considering concrete stresses in principal directions summed with reinforcing stresses assumed to be only axial. The concrete stress-strain behaviour was derived originally from Vecchio's tests and has since been confirmed with about 250 experiments performed on two large special purpose testing machines at the University of ...
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]
This kind of concrete is also known as self-repairing concrete. Because concrete has a poor tensile strength compared to other building materials, it often develops cracks in the surface. These cracks reduce the durability of the concrete because they facilitate the flow of liquids and gases that may contain harmful compounds.
Normal concrete contains 19 mm (0.75 in) equivalent diameter aggregate which is 35-45% of concrete, fibers longer than 20 mm (0.79 in) are more effective. However, fibers that are too long and not properly treated at time of processing tend to "ball" in the mix and create work-ability problems.
When a reinforced concrete member is put in tension, after cracking, the member elongates by widening of cracks and by formation of new cracks. Figure 1 Formation of internal cracks. Ignoring the small elastic strain in the concrete between the cracks, we can relate the crack width to the strain of the member by:
ASTM C1293: "Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction". It is a long-term confirmation test (1 or 2 years) at 38 °C in a water-saturated moist atmosphere (inside a thermostated oven) with concrete prisms containing the aggregates to be characterised mixed with a high-alkali ...
The concrete can develop high compressive and tensile strengths, while shrinkage and creep remain acceptable, but will generally be less rigid than conventional mixes. The most obvious advantage is the low density, but these concretes also have low permeability to water and greater thermal insulation.